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Part I

Introduction



I. Introduction
Cardinality

The classical notion of cardinality determines whether X is smaller
than Y by asking if there is an injection of X into Y .

Much recent work has focused on the refinement of this notion in
which one requires that the injection is suitably definable.
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I. Introduction
Motivating examples

Example 1

There is no classification of subgroups of Q using elements of N as
invariants, since there are |R|-many isomorphism classes.

Theorem 2 (Folklore?)

There is no classification of subgroups of Q using elements of R as
invariants, since the definable cardinality of the set of isomorphism
classes is strictly greater than the definable cardinality of R.
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I. Introduction
Motivating examples

Example 3

There is no classification of ergodic, Lebesgue measure-preserving
transformations using elements of N as invariants, since there are
|R|-many isomorphism classes.

Theorem 4 (Hjorth)

There is no classification of ergodic, Lebesgue measure-preserving
transformations using isomorphism classes of countable groups as
invariants, since the definable cardinality of the set of isomorphism
classes is again too large.
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I. Introduction
Basic definitions

Notation

Suppose X and Y are standard Borel spaces.

Notation

Suppose E and F are Borel equivalence relations on X and Y .
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I. Introduction
Basic definitions

Definition

A homomorphism from E to F is a function ϕ : X → Y sending
E -equivalent points to F -equivalent points.

A homomorphism is a map factoring over the quotients.
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I. Introduction
Basic definitions

Definition

A reduction of E to F is a homomorphism from E to F sending
E -inequivalent points to F -inequivalent points.

A reduction is a map factoring to an injection over the quotients.
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I. Introduction
Basic definitions

Suppose that B is a class of subsets of standard Borel spaces.

Notation

We write E ≤B F if there is a B-measurable reduction of E to F .

Notation

When this is the case, we say also that the B-cardinality of X/E is
at most that of Y /F , or simply that |X/E |B ≤ |Y /F |B.

7



I. Introduction
General comments

Borel cardinality is the standard notion of definable cardinality.

It is fine enough to detect many anti-classification results.

It avoids metamathematical difficulties inherent in broader notions.

It often coincides with other natural notions of definable cardinality.

It has deep connections with many other areas of mathematics.
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II. Background
An initial segment of the Borel cardinals

The sequence |0|, |1|, . . . , |N| is an initial segment of the cardinals.

And |0|B , |1|B , . . . , |N|B is an initial segment of the Borel cardinals.
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II. Background
An initial segment of the Borel cardinals

The continuum hypothesis (Cantor)

The successor of |N| is |R|.

Theorem 5 (Cohen, Gödel)

The continuum hypothesis is independent of the standard axioms.
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II. Background
An initial segment of the Borel cardinals

Theorem 6 (Silver)

The successor of |N|B is |R|B .

Note that |X/E | is always at most |R|.

But the Vitali argument can be used to show that |R|B < |R/Q|B .
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II. Background
An initial segment of the Borel cardinals

Beginning in the 1960s with work of Effros and Glimm in operator
algebras, the successor of |R|B was eventually identified.

Theorem 7 (Harrington-Kechris-Louveau)

The successor of |R|B is |R/Q|B .

12



II. Background
An initial segment of the Borel cardinals

Definition

An equivalence relation is finite if its classes are finite.

Definition

An equivalence relation is countable if its classes are countable.
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II. Background
An initial segment of the Borel cardinals

Definition

We say that E is hyperfinite if there is an increasing sequence
(En)n∈N of finite Borel equivalence relations whose union is E .

Theorem 8 (Dougherty-Jackson-Kechris)

If E is countable, then E is hyperfinite iff |X/E |B ≤ |R/Q|B .
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II. Background
An initial segment of the Borel cardinals

Although Borel reducibility of hyperfinite equivalence relations is un-
derstood, many questions concerning hyperfiniteness remain open.

Question

Suppose that (En)n∈N is an increasing sequence of hyperfinite equiv-
alence relations. Is

�
n∈N En hyperfinite?

Question

Suppose that Γ � X is a Borel action of an amenable countable
group. Is EX

Γ hyperfinite?
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II. Background
An initial segment of the Borel cardinals

Hyperfiniteness is a Borel analog of a measure-theoretic notion.

Suppose that µ is a Borel probability measure on X .

Definition

We say that E is µ-hyperfinite if there is a µ-conull Borel set C ⊆ X
with the property that E � C is hyperfinite.
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II. Background
An initial segment of the Borel cardinals

The measure-theoretic analogs of many open questions concerning
hyperfiniteness have well-known solutions.

Theorem 9 (Dye-Krieger)

Suppose that (En)n∈N is an increasing sequence of µ-hyperfinite
equivalence relations. Then

�
n∈N En is µ-hyperfinite.

Theorem 10 (Ornstein-Weiss)

Suppose that Γ � X is a Borel action of an amenable countable
group. Then EX

Γ is µ-hyperfinite.

17



II. Background
An initial segment of the Borel cardinals

There is a useful middle ground between these notions.

Definition

We say that E is measure hyperfinite if it is µ-hyperfinite for every
Borel probability measure µ on X .

Proposition 11 (Kechris)

Under add(null) = c, a countable Borel equivalence relation E is
measure hyperfinite iff |X/E |UM ≤ |R/Q|UM .
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II. Background
An initial segment of the Borel cardinals

Corollary 12

Suppose that (En)n∈N is an increasing sequence of measure hyperfi-
nite equivalence relations. Then

�
n∈N En is measure hyperfinite.

Corollary 13

Suppose that Γ � X is a Borel action of an amenable countable
group. Then EX

Γ is measure hyperfinite.
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II. Background
An initial segment of the Borel cardinals

Intuitively, an equivalence relation is measure hyperfinite if it cannot
be proven to be non-hyperfinite via measure-theoretic techniques.

Question

Are measure hyperfinite equivalence relations always hyperfinite?
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II. Background
An initial segment of the Borel cardinals

A positive answer to this question would essentially answer all re-
maining open questions concerning hyperfiniteness.

In order to see how one might obtain such an answer, it is instructive
to return to an earlier result, albeit in a somewhat different guise.
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II. Background
An initial segment of the Borel cardinals

Definition

We say that E is smooth if |X/E |B ≤ |R|B .

Definition

We say that E is µ-smooth if there is a µ-conull Borel set B ⊆ X
with the property that E � B is smooth.

Definition

We say that E is measure smooth if it is µ-smooth for every Borel
probability measure µ on X .
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II. Background
An initial segment of the Borel cardinals

Corollary 14 (Harrington-Kechris-Louveau)

An equivalence relation is smooth iff it is measure smooth.

Proof

We will show that if E is not smooth, then it is not measure smooth.

If E is not smooth, then |R/Q|B ≤ |X/E |B .

So there is a Borel reduction ϕ : R → X of ER
Q to E .
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II. Background
An initial segment of the Borel cardinals

Proof of Corollary 14 (continued)

Let m denote the Lebesgue measure on R.

Let µ denote the pushforward of m through ϕ.

Suppose, towards a contradiction, that E is measure smooth.

Then E is µ-smooth.
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II. Background
An initial segment of the Borel cardinals

Proof of Corollary 14 (continued)

Fix a µ-conull Borel set C ⊆ X for which E � C is smooth.

Then ϕ−1(C ) is an m-conull Borel set and ER
Q � ϕ−1(C ) is smooth.

But the Vitali argument shows that this is impossible.
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II. Background
An initial segment of the Borel cardinals

Corollary 15

Under add(null) = c, it follows that the notions of Borel, universally
measurable, and ℵ0-universally Baire reducibility agree up to R.

These notions coincide because there is a one-element basis for the
class of equivalence relations failing to satisfy the stronger notion
whose unique element fails to satisfy the weaker notions.
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II. Background
An initial segment of the Borel cardinals

Theorem 16 (Hjorth-Kechris)

Suppose that E is countable. Then |X/E |BP ≤ |R/Q|BP .

Question

Is there a basis for the class of non-hyperfinite equivalence relations
consisting of non-measure-hyperfinite equivalence relations?
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II. Background
An initial segment of the Borel cardinals

A positive answer to this question would provide an analog of the
Glimm-Effros dichotomy characterizing when |X/E |B �≤ |R/Q|B .

Question

Is there a Glimm-Effros-style dichotomy characterizing when E is not
measure hyperfinite, or equivalently, when |X/E |UM �≤ |R/Q|UM?
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II. Background
Interlude

We have thus far focused on the base of Borel reducibility hierarchy.

One would also like to understand it from a more global viewpoint.

Many results have been established suggesting that the properties
of Borel cardinality differ wildly from those of the classical notion.

Here we will focus on the fact that they are not linearly ordered.
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II. Background
Non-linearity

Theorem 17 (Louveau-Velickovic, Woodin)

There is an uncountable family of incomparable Borel cardinals.

The proof actually yields incomparable Baire property cardinals.

Unfortunately, this means that their techniques cannot be used to
obtain incomparable countable Borel equivalence relations.
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II. Background
Non-linearity

This leads to the question of whether analogous results can be es-
tablished via measure-theoretic techniques.

An answer was eventually obtained using Zimmer superrigidity.
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II. Background
Non-linearity

Theorem 18 (Adams-Kechris)

There is a family of continuum-many incomparable Borel cardinals
associated with countable Borel equivalence relations.

Their argument produced a family of continuum-many incomparable
Lebesgue-measurable cardinals.
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II. Background
Non-linearity

Hjorth-Kechris eventually found a simpler proof of this result elimi-
nating the need for Zimmer superrigidity.

However, both arguments relied critically on rigidity properties of
actions of product groups.

This places severe restrictions on the extent to which their arguments
can be pushed towards the base of the Borel reducibility hierarchy.
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II. Background
Non-linearity

Definition

A Borel equivalence relation is treeable if its equivalence classes
coincide with the connected components of an acyclic Borel graph.

Arguments of Adams, Hjorth, and Kechris rule out the treeability of
orbit equivalence relations of product group actions.
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II. Background
Non-linearity

For many years, the question of whether there are incomparable
countable treeable Borel equivalence relations was open.

Shortly before his recent passing, Hjorth discovered the answer.
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II. Background
Non-linearity

Theorem 19 (Hjorth)

There is a family of continuum-many incomparable Borel cardinals
associated with countable treeable Borel equivalence relations.

The argument again produced a family of continuum-many incom-
parable Lebesgue-measurable cardinals.
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II. Background
Non-linearity

While not literally at the base of the reducibility hierarchy, the count-
able treeable Borel equivalence relations are in some sense the sim-
plest ones that appear naturally.

As a result, it is not immediately clear what it would mean to push
the incomparability results further towards the base of the Borel
reducibility hierarchy.

37



II. Background
Non-linearity

Question

Suppose that B is a basis for the family of countable treeable Borel
equivalence relations E for which |R/Q|B < |X/E |B . What can be
said about the structure of Borel reducibility on B?

In the rest of this lecture, we discuss some recent progress towards
answering this question.
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III. Local rigidity
Basic definitions

Definition

Let Hom(E , µ,F ) be the set of µ-measurable homomorphisms ϕ.

Definition

Let HomE0(E , µ,F ) be the set of µ-hyperfinite-to-one such ϕ.
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III. Local rigidity
Basic definitions

Definition

Given ϕ,ψ : X → Y , let D(ϕ,ψ) denote {x ∈ X | ϕ(x) �= ψ(x)}.

Definition

Given a group ∆, a function ρ : E → ∆, and an action ∆ � Y , we
say that a function ϕ : X → Y is ρ-invariant if

∀(x , y) ∈ E ϕ(x) = ρ(x , y) · ϕ(y).
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III. Local rigidity
Basic definitions

Definition

We say that an action ∆ � Y generating F is locally rigid if when-
ever X is a standard Borel space, E is a countable Borel equivalence
relation on X , ρ : E → ∆ is Borel, and ϕ,ψ ∈ HomE0(E , µ,F ) are
ρ-invariant, the relation E � D(ϕ,ψ) is µ-hyperfinite.
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III. Local rigidity
An example

Definition

Let SL2(Z)�Z2 denote the group of transformations T : R2 → R2

of the form T (x) = Ax + b, where A ∈ SL2(Z) and b ∈ Z2.

Definition

Let SL2(Z)� Z2 � R2 denote the corresponding action.
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III. Local rigidity
An example

Definition

Let T be the space of infinite rays through R2 rooted at the origin.

Definition

Let SL2(Z) � T denote the action induced by SL2(Z) � R2.
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III. Local rigidity
An example

Definition

Let T2 denote R2/Z2.

Definition

Let SL2(Z) � T2 denote the action induced by SL2(Z) � R2.
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III. Local rigidity
An example

Theorem 20

The action SL2(Z)� Z2 � R2 is locally rigid.

Proof

Let F denote the orbit equivalence relation of SL2(Z)�Z2 � R2.

Suppose X is a standard Borel space, E is a countable Borel equiv-
alence relation on X , ρ : E → ∆ is Borel, µ is a Borel probability
measure on X , ϕ ∈ HomE0(E , µ,F ), and ψ ∈ Hom(E , µ,F ).
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III. Local rigidity
An example

Proof of Theorem 20 (continued)

Define π : D(ϕ,ψ) → T by π(x) = projT(ϕ(x)− ψ(x)).

Define σ : E � D(ϕ,ψ) → SL2(Z) by σ(x , y) = projSL2(Z)◦ρ(x , y).

Then π is σ-invariant.

In particular, it is a homomorphism from E � D(ϕ,ψ) to ET
SL2(Z).
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III. Local rigidity
An example

Proof of Theorem 20 (continued)

Jackson-Kechris-Louveau have shown that ET
SL2(Z) is hyperfinite.

And the existence of a µ-hyperfinite-to-one Borel homomorphism to
a hyperfinite equivalence relation implies µ-hyperfiniteness.

So we must check that if θ ∈ T, then E � π−1(θ) is µ-hyperfinite.
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III. Local rigidity
An example

Proof of Theorem 20 (continued)

Set Γ = StabSL2(Z)(θ).

Then Γ is cyclic, so ET2

Γ is hyperfinite by a result of Slaman-Steel.
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III. Local rigidity
An example

Proof of Theorem 20 (continued)

Note that projT2 ◦ ϕ is σ-invariant.

And σ[E � π−1(θ)] ⊆ Γ.

So ϕ is a homomorphism from E � π−1(θ) to ET2

Γ .

Thus E � π−1(θ) is µ-hyperfinite.
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III. Local rigidity
Separability

Definition

Define dµ on Hom(E , µ,F ) by dµ(ϕ,ψ) = µ(D(ϕ,ψ)).

Definition

We say that F has separable homomorphisms if whenever X is a
standard Borel space, E is a countable Borel equivalence relation on
X , and µ is a Borel probability measure on X , at least one of the
following holds:

The equivalence relation E is µ-somewhere hyperfinite.

The space HomE0(E , µ,F ) is separable.
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III. Local rigidity
Separability

Proposition 21

Suppose that Y and Y � are standard Borel spaces, F and F � are
countable Borel equivalence relations on X and Y , F has separable
homomorphisms, and there is a countable-to-one Borel homomor-
phism from F � to F . Then F � has separable homomorphisms.

Proof

The separabililty of HomE0(E , µ,F ) is equivalent to the existence of
a Borel set R ⊆ X × Y with countable vertical sections such that
µ({x ∈ X | (x ,ϕ(x)) ∈ R}) = 1 for all ϕ ∈ HomE0(E , µ,F ).

But any such set can be pulled back to one for F �.
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III. Local rigidity
Separability

Theorem 22

Suppose that Y is a standard Borel space and F is a countable Borel
equivalence relation on Y generated by a locally rigid Borel action
∆ � Y . Then F has separable homomorphisms.

Proof

Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X , and µ is a Borel probability measure on
X for which E is µ-nowhere hyperfinite.
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III. Local rigidity
Separability

Proof of Theorem 22 (continued)

Write F =
�

n∈N Rn, where (Rn)n∈N is an increasing sequence of
Borel sets whose vertical sections are of bounded finite cardinality.

Fix countable families Fn of functions ρ : Rn → ∆ dense in the
space of µ-measurable functions σ : Rn → ∆ equipped with dµ.

For all n ∈ N, ρ ∈ Fn, and rational � > 0 for which it is possible, fix
σ in the �-ball of ρ and a σ-invariant function ϕ ∈ HomE0(E , µ,F ).

Then the set of such ϕ is dense in HomE0(E , µ,F ).
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IV. Applications
Incomparable equivalence relations

Theorem 23

Suppose that X is a standard Borel space, E is a countable treeable
Borel equivalence relation on X with separable homomorphisms, and
µ is an E -invariant Borel probability measure on X . Then exactly
one of the following holds:

1 The equivalence relation E is µ-hyperfinite.

2 There are continuum-many pairwise incomparable µ-cardinals
associated with Borel subequivalence relations of E .
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IV. Applications
Incomparable equivalence relations

Proof

We can assume that E is µ-nowhere hyperfintie.

Fix a sequence (Fr )r∈R of Borel subequivalence relations of E with
the property that B ∩ [x ]Fr ⊂ B ∩ [x ]Fs for µ-almost every x ∈ X
whenever B ⊆ X is µ-positive and r < s.

Ensure, moreover, that F =
�

r∈R Fr is µ-nowhere hyperfinite.
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IV. Applications
Incomparable equivalence relations

Proof of Theorem 23 (continued)

Then for each s ∈ R, the space HomE0(F , µ,Fs) is separable.

So there are only countably many r ∈ R for which there is a µ-
measurable reduction of Fr to Fs .

Thus the set of (r , s) for which there is such a reduction is meager.

Fix a perfect set on which there are no such pairs.
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IV. Applications
Incomparable equivalence relations

Remark 24

For each n ∈ {2, 3, . . . ,ℵ0}, one can ensure that the equivalence
relations are induced by Borel free actions Fn � X .

Remark 25

One can similarly obtain families lying entirely within the countable-
to-one Borel homomorphism class of E .

Remark 26

One can also mimic the arguments of Adams-Kechris to obtain
analogs of their complexity results.
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IV. Applications
Ideals

Definition

A cohomomorphism from a σ-ideal I on X to a σ-ideal J on Y is
a function π : X → Y sending I-positive sets to J -positive sets.
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IV. Applications
Ideals

Theorem 27

Suppose that X and Y are standard Borel spaces, E and F are
countable Borel equivalence relations on X and Y , F has separable
homomorphisms, µ is a Borel probability measure on X , and I is a
σ-ideal on Y . Then one of the following holds:

The equivalence relation E is somewhere µ-hyperfinite.

There is an I-conull Borel set C ⊆ Y for which every µ-hyp-
erfinite-to-one µ-measurable homomorphism from E to F � C
is a cohomomorphism from the µ-null ideal to I � C .
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IV. Applications
Ideals

Proof

By the separability of HomE0(E , µ,F ), there is a countable maximal
pairwise disjoint family of Borel I-null sets N for which there is a µ-
hyperfinite-to-one µ-measurable homomorphism from E to F � N.

Let C be the complement of the union of these sets.
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IV. Applications
Measures

Definition

We say that µ captures the complexity of E if for no µ-conull Borel
set C ⊆ X and µ-null Borel set N ⊆ X is there µ-hyperfinite-to-one
µ-measurable homomorphism from E � C to E � N.

Proposition 28

Suppose that X is a standard Borel space, E is a countable Borel
equivalence relation on X , and µ is an E -ergodic Borel measure on X
capturing the complexity of E . Then there is no (µ×2)-measurable
reduction from E ×∆(2) to E .
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IV. Applications
Measures

Corollary 29

Suppose X is a standard Borel space, E is a countable Borel equiva-
lence relation on X with separable homomorphisms, and µ is a Borel
probability measure on X . Then exactly one of the following holds:

The equivalence relation E is µ-hyperfinite.

There is a µ-conull Borel set C ⊆ Y such that µ � C captures
the complexity of E � C .
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IV. Applications
Bases

Theorem 30

Suppose that B is a basis for the class of non-measure-hyperfinite
treeable countable Borel equivalence relations on standard Borel
spaces. Then |B| ≥ add(null).

Proof

Suppose, towards a contradiction, that |B| < add(null).
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IV. Applications
Bases

Proof of Theorem 30 (continued)

Fix a set E of add(null)-many non-µ-hyperfinite treeable countable
Borel equivalence relations which are pairwise incomparable under
µ-measurable reducibility and with respect to which µ is ergodic.

By replacing each relation in E with its restriction to a µ-conull
Borel set, we can assume that every Borel reduction of a relation in
B to a relation in E has µ-positive image.

Then each relation in B is Borel reducible to at most one E ∈ E .

So B is too small to be a basis for E .
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